318 research outputs found

    When is proton pump inhibitor use appropriate?

    Get PDF
    Proton pump inhibitor (PPI) therapy is commonly used outside of Food and Drug Administration indication for a broad range of conditions such as extra-esophageal reflux and PPI-responsive esophageal eosinophilia. While this may be appropriate in some scenarios, it has also resulted in widespread inappropriate PPI use. At the same time, data suggesting adverse effects of long-term PPI therapy are multiplying, albeit mainly from low quality studies. The systematic review by Scarpignato et al. (BMC Med 14:179, 2016) addresses this dilemma with a comprehensive analysis of the risks and benefits of PPI use. The authors concluded that, while PPIs are highly efficacious in erosive acid-peptic disorders, efficacy is not equaled in other conditions. In some instances, they found no supportive evidence of benefit. With respect to side effects, they indicated that the questionable harms associated with PPI therapy do not outweigh the benefits afforded by appropriate PPI use. However, inappropriate PPI use results in increased healthcare costs and unnecessary exposure to potential adverse effects. Ideally, PPI therapy should be personalized, based on indication, effectiveness, patient preference, and risk assessment.Please see related article: http://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-016-0718-z

    A fully resolved active musculo-mechanical model for esophageal transport

    Full text link
    Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multi-layered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, which is modeled as an actively contracting, fiber-reinforced tube. A simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are then extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation into an integrated model. Consistent with experimental observations, our simulations capture the pressure peak generated by the muscle activation pulse that travels along the bolus tail. These fully resolved simulations provide new insights into roles of the mucosal layers during bolus transport. In addition, the information on pressure and the kinematics of the esophageal wall due to the coordination of muscle activation is provided, which may help relate clinical data from manometry and ultrasound images to the underlying esophageal motor function

    A continuum mechanics-based musculo-mechanical model for esophageal transport

    Get PDF
    In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structural model, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal with the leakage of flow when the Lagrangian mesh becomes coarser than the fluid mesh, we employ adaptive interaction quadrature points to deal with Lagrangian-Eulerian interaction equations based on a previous work (Griffith and Luo [1]). In particular, we introduce a new anisotropic adaptive interaction quadrature rule. The new rule permits us to vary the interaction quadrature points not only at each time-step and element but also at different orientations per element. This helps to avoid the leakage issue without sacrificing the computational efficiency and accuracy in dealing with the interaction equations. For the material model, we extend our previous fiber-based model to a continuum-based model. We present formulations for general fiber-reinforced material models in the IB-FE framework. The new material model can handle non-linear elasticity and fiber-matrix interactions, and thus permits us to consider more realistic material behavior of biological tissues. To validate our method, we first study a case in which a three-dimensional short tube is dilated. Results on the pressure-displacement relationship and the stress distribution matches very well with those obtained from the implicit FE method. We remark that in our IB-FE case, the three-dimensional tube undergoes a very large deformation and the Lagrangian mesh-size becomes about 6 times of Eulerian mesh-size in the circumferential orientation. To validate the performance of the method in handling fiber-matrix material models, we perform a second study on dilating a long fiber-reinforced tube. Errors are small when we compare numerical solutions with analytical solutions. The technique is then applied to the problem of esophageal transport. We use two fiber-reinforced models for the esophageal tissue: a bi-linear model and an exponential model. We present three cases on esophageal transport that differ in the material model and the muscle fiber architecture. The overall transport features are consistent with those observed from the previous model. We remark that the continuum-based model can handle more realistic and complicated material behavior. This is demonstrated in our third case where a spatially varying fiber architecture is included based on experimental study. We find that this unique muscle fiber architecture could generate a so-called pressure transition zone, which is a luminal pressure pattern that is of clinical interest. This suggests an important role of muscle fiber architecture in esophageal transport

    A mechanics--based perspective on the function of human sphincters during functional luminal imaging probe manometry

    Full text link
    Functional luminal imaging probe (FLIP) is used to measure cross-sectional area (CSA) and pressure at sphincters. It consists of a catheter surrounded by a fluid filled cylindrical bag, closed on both ends. Plotting the pressure-CSA hysteresis of a sphincter during a contraction cycle, which is available through FLIP testing, offers information on its functionality, and can provide diagnostic insights. However, limited work has been done to explain the mechanics of these pressure-CSA loops. This work presents a consolidated picture of pressure-CSA loops of different sphincters. Clinical data reveal that although sphincters have a similar purpose (controlling the flow of liquids and solids by opening and closing), two different pressure-CSA loop patterns emerge: negative slope loop (NSL) and positive slope loop (PSL). We show that the loop type is the result of an interplay between (or lack thereof) two mechanical modes: (i) neurogenic mediated relaxation of the sphincter muscle and (ii) muscle contraction proximal to the sphincter which causes mechanical distention. We conclude that sphincters which only function through mechanism (i) exhibition NSL whereas sphincters which open as a result of both (i) and (ii) display a PSL. This work provides a fundamental mechanical understanding of human sphincters. This can be used to identify normal and abnormal phenotypes for the different sphincters and help in creating physiomarkers based on work calculation

    Esophageal motility disorders on high-resolution manometry: Chicago classification version 4.0©

    Full text link
    Chicago Classification v4.0 (CCv4.0) is the updated classification scheme for esophageal motility disorders using metrics from high-resolution manometry (HRM). Fifty-two diverse international experts separated into seven working subgroups utilized formal validated methodologies over two-years to develop CCv4.0. Key updates in CCv.4.0 consist of a more rigorous and expansive HRM protocol that incorporates supine and upright test positions as well as provocative testing, a refined definition of esophagogastric junction (EGJ) outflow obstruction (EGJOO), more stringent diagnostic criteria for ineffective esophageal motility and description of baseline EGJ metrics. Further, the CCv4.0 sought to define motility disorder diagnoses as conclusive and inconclusive based on associated symptoms, and findings on provocative testing as well as supportive testing with barium esophagram with tablet and/or functional lumen imaging probe. These changes attempt to minimize ambiguity in prior iterations of Chicago Classification and provide more standardized and rigorous criteria for patterns of disorders of peristalsis and obstruction at the EGJ

    Evaluation of Esophageal Motility Utilizing the Functional Lumen Imaging Probe

    Get PDF
    © 2016 by the American College of Gastroenterology. Objectives:Esophagogastric junction (EGJ) distensibility and distension-mediated peristalsis can be assessed with the functional lumen imaging probe (FLIP) during a sedated upper endoscopy. We aimed to describe esophageal motility assessment using FLIP topography in patients presenting with dysphagia.Methods:In all, 145 patients (aged 18-85 years, 54% female) with dysphagia that completed up per endoscopy with a 16-cm FLIP assembly and high-resolution manometry (HRM) were included. HRM was analyzed according to the Chicago Classification of esophageal motility disorders; major esophageal motility disorders were considered "abnormal". FLIP studies were analyzed using a customized program to calculate the EGJ-distensibility index (DI) and generate FLIP topography plots to identify esophageal contractility patterns. FLIP topography was considered "abnormal" if EGJ-DI was < 2.8 mm 2 /mm Hg or contractility pattern demonstrated absent contractility or repetitive, retrograde contractions.Results:HRM was abnormal in 111 (77%) patients: 70 achalasia (19 type I, 39 type II, and 12 type III), 38 EGJ outflow obstruction, and three jackhammer esophagus. FLIP topography was abnormal in 106 (95%) of these patients, including all 70 achalasia patients. HRM was "normal" in 34 (23%) patients: five ineffective esophageal motility and 29 normal motility. In all, 17 (50%) had abnormal FLIP topography including 13 (37%) with abnormal EGJ-DI.Conclusions:FLIP topography provides a well-tolerated method for esophageal motility assessment (especially to identify achalasia) at the time of upper endoscopy. FLIP topography findings that are discordant with HRM may indicate otherwise undetected abnormalities of esophageal function, thus FLIP provides an alternative and complementary method to HRM for evaluation of non-obstructive dysphagia.Link_to_subscribed_fulltex

    Review article: rethinking the “ladder” approach to reflux-like symptom management in the era of PPI “resistance”: a multidisciplinary perspective

    Get PDF
    Background: Despite widespread adoption of potent acid suppression treatment with proton pump inhibitors (PPI) for reflux-like symptoms, persistent symptoms are commonly reported in primary care and community studies. Aims: This multidisciplinary review critically evaluates how the management of reflux-like symptoms could better reflect their multifactorial pathophysiology. Methods: A panel of experts (from general practice, gastroenterology and gastropsychology) attended a series of workshops to review current management and propose a framework for the provision of more individualised care. Results: It was agreed that the perceptual (as well as the physiological) causes of reflux-like symptoms should be considered at the start of management, not as a last resort when all else has failed. A short course of PPI is a pragmatic approach to address reflux-like symptoms, but equally important is counselling about the gut-brain axis and provision of symptom-specific behavioural interventions for those who show signs of somatisation, hypervigilance or co-existing disorders of gut-brain interaction. Other low-harm interventions such as lifestyle and dietary advice, should also be better integrated into care at an early stage. Multidisciplinary care management programmes (including dietary, weight loss, exercise and behavioural intervention) should be developed to promote greater self-management and take advantage of the general shift toward the use of remotely accessed health care resources. Conclusions: Management of reflux-like symptoms should be adapted to reflect the advances in knowledge about the multifactorial aetiology of these symptoms, addressing both acid-related and behavioural components early in management. The time has come to treat the patient, not the “disease”

    Efficacy of transoral fundoplication vs omeprazole for treatment of regurgitation in a randomized controlled trial.

    Get PDF
    Background The aim of this randomized, crossover study was to determine if transoral fundoplication (TF) could further improve clinical outcomes in partial responders to high-dose (HD) proton-pump inhibitor (PPI) therapy and to evaluate durability of TF. Methods In seven United States centers, patients with hiatal hernia ≤2 cm and abnormal esophageal acid exposure (EAE) were randomized to TF (n = 40) or HD PPIs (n = 23) group. At 6-month follow-up, PPI patients underwent crossover. We assessed clinical outcomes 6-month post TF in crossover patients (COP), as compared to 6-month of HD PPI therapy, and 12-month outcomes in patients initially randomized to TF. The primary outcome was symptom control evaluated by Reflux Disease Questionnaire and Reflux Symptom Index. Secondary outcomes included healing of esophagitis, normalization of EAE and PPI use after TF. We analyzed 21 COP and 39 TF patients. McNemar’s test or Fisher exact test was used to compare proportions. Results Of 63 randomized patients, 3 were lost to follow-up, leaving 39 TF and 21 COP for analyses. In the COP, TF further improved control of regurgitation and of atypical symptoms achieved after six months of HD PPIs. Of 20 patients with GERD symptoms after six months of high-dose PPI therapy, 65% (13/20) reported global elimination of troublesome regurgitation and atypical symptoms post TF off PPIs; 67% (6/9) reported no troublesome regurgitation. Esophagitis further healed in 75% (6/8) of patients. Seventy-one percent of COP patients were off PPIs six months following TF. Normalization of EAE decreased from 52% after HD PPIs (on PPIs) to 33% after TF (off PPIs), p =0.388. In the original TF group, 12-month post TF, 77% of patients achieved complete symptom control, 82% ceased PPI therapy, 100% healed esophagitis and 45% normalized EAE. Conclusions The results of this study indicate that in patients with incomplete symptom control on high-dose PPI therapy TF may provide further elimination of symptoms and esophagitis healing. In the original TF group, the clinical outcomes of TF remained stable between 6- and 12-month follow-up. Trial registration Clinicaltrials.gov: NCT01647958
    • …
    corecore